Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) "dekat" pada L ketika x dekat pada p. Dengan kata lain, f(x) menjadi semakin dekat kepada L ketika x juga mendekat menuju p. Lebih jauh lagi, bila f diterapkan pada tiap masukan yang cukup dekat pada p, hasilnya adalah keluaran yang (secara sembarang) dekat dengan L. Bila masukan yang dekat pada p ternyata dipetakan pada keluaran yang sangat berbeda, fungsi f dikatakan tidak memiliki limit.
Definisi limit dirumuskan secara formal mulai abad ke-19.
Aturan menentukan turunan fungsi
Turunan dapat ditentukan tanpa proses limit[2]. Untuk keperluan ini dirancang teorema tentang turunan dasar, turunan dari operasi aljabar pada dua fungsi, aturan rantai untuk turunan fungsi komposisi, dan turunan fungsi invers]]Turunan dasar
Aturan - aturan dalam turunan fungsi adalah[3] :- f(x), maka f'(x) = 0
- Jika f(x) = x, maka f’(x) = 1
- Aturan pangkat : Jika f(x) = xn, maka f’(x) = n X n – 1
- Aturan kelipatan konstanta : (kf) (x) = k. f’(x)
- Aturan rantai : ( f o g ) (x) = f’ (g (x)). g’(x))
Turunan jumlah, selisih, hasil kali, dan hasil bagi dua fungsi
Misalkan fungsi f dan g terdiferensialkan pada selang I, maka fungsi f + g, f – g, fg, f/g, ( g (x) ≠ 0 pada I ) terdiferensialkan pada I dengan aturan[4] :- ( f + g )’ (x) = f’ (x) + g’ (x)
- ( f – g )’ (x) = f’ (x) + g’ (x)
- (fg)’ (x) = f (x) g’(x) + g’(x) f(x)
- ((f)/g )’ (x) = (g(x) f' (x)- f(x) g' (x))/((g(x)2)
Turunan fungsi trigonometri
- d/dx ( sin x ) = cos x[5]
- d/dx ( cos x ) = - sin x[5]
- d/dx ( tan x ) = sec2 x[5]
- d/dx ( cot x ) = - csc2 x[5]
- d/dx ( sec x ) = sec x tan x[5]
- d/dx ( csc x ) = -csc x cot x[5]
Tidak ada komentar:
Posting Komentar