Limit Fungsi

Limit suatu fungsi merupakan salah satu konsep mendasar dalam kalkulus dan analisis, tentang kelakuan suatu fungsi mendekati titik masukan tertentu.

Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) "dekat" pada L ketika x dekat pada p. Dengan kata lain, f(x) menjadi semakin dekat kepada L ketika x juga mendekat menuju p. Lebih jauh lagi, bila f diterapkan pada tiap masukan yang cukup dekat pada p, hasilnya adalah keluaran yang (secara sembarang) dekat dengan L. Bila masukan yang dekat pada p ternyata dipetakan pada keluaran yang sangat berbeda, fungsi f dikatakan tidak memiliki limit.
Definisi limit dirumuskan secara formal mulai abad ke-19.

Aturan menentukan turunan fungsi

Turunan dapat ditentukan tanpa proses limit[2]. Untuk keperluan ini dirancang teorema tentang turunan dasar, turunan dari operasi aljabar pada dua fungsi, aturan rantai untuk turunan fungsi komposisi, dan turunan fungsi invers]]

Turunan dasar

Aturan - aturan dalam turunan fungsi adalah[3] :
  1. f(x), maka f'(x) = 0
  2. Jika f(x) = x, maka f’(x) = 1
  3. Aturan pangkat : Jika f(x) = xn, maka f’(x) = n X n – 1
  4. Aturan kelipatan konstanta : (kf) (x) = k. f’(x)
  5. Aturan rantai : ( f o g ) (x) = f’ (g (x)). g’(x))


Turunan jumlah, selisih, hasil kali, dan hasil bagi dua fungsi

Misalkan fungsi f dan g terdiferensialkan pada selang I, maka fungsi f + g, f – g, fg, f/g, ( g (x) ≠ 0 pada I ) terdiferensialkan pada I dengan aturan[4] :
  1. ( f + g )’ (x) = f’ (x) + g’ (x)
  2. ( f – g )’ (x) = f’ (x) + g’ (x)
  3. (fg)’ (x) = f (x) g’(x) + g’(x) f(x)
  4. ((f)/g )’ (x) = (g(x) f' (x)- f(x) g' (x))/((g(x)2)

Turunan fungsi trigonometri

  1. d/dx ( sin x ) = cos x[5]
  2. d/dx ( cos x ) = - sin x[5]
  3. d/dx ( tan x ) = sec2 x[5]
  4. d/dx ( cot x ) = - csc2 x[5]
  5. d/dx ( sec x ) = sec x tan x[5]
  6. d/dx ( csc x ) = -csc x cot x[5]

Turunan fungsi invers

(f-1)(y) = 1/(f' (x)), atau dy/dx = 1/(dx/dy)[5]

Tidak ada komentar:

Posting Komentar